A Complete Analysis of Resultants and Extraneous Factors for Unmixed Bivariate Polynomial Systems using the Dixon formulation
نویسندگان
چکیده
A necessary and sufficient condition on the support of a generic unmixed bivariate polynomial system is identified such that for polynomial systems with such support, the Dixon resultant formulation produces their resultants. It is shown that Sylvester-type matrices can also be obtained for such polynomial systems. These results are shown to be a generalization of related results recently reported by Chionh as well as Zhang and Goldman. For a support not satisfying the above condition, the degree of the extraneous factor in the projection operator computed by the Dixon formulation is calculated by analyzing how much the support deviates from a related rectangular support satisfying the condition. The concept of the interior of a support is introduced; a generic inclusion of terms corresponding to support interior points in a polynomial system does not affect the nature of the projection operator computed by the Dixon construction. For generic mixed bivariate systems, ”good” Sylvester type matrices can be constructed by solving an optimization problem on their supports. The determinant of such a matrix gives a projection operator with a low degree extraneous factor. The results are illustrated on a variety of examples.
منابع مشابه
Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation
Structural conditions on the support of a multivariate polynomial system are developed for which the Dixon-based resultant methods compute exact resultants. For cases when this cannot be done, an upper bound on the degree of the extraneous factor in the projection operator can be determined a priori, thus resulting in quick identification of the extraneous factor in the projection operator. (Fo...
متن کاملResultants for Unmixed Bivariate Polynomial Systems using the Dixon formulation
A necessary and sufficient condition on the support of a generic unmixed bivariate polynomial system is identified such that for polynomial systems with such support, the Dixon resultant formulation produces their resultants. It is shown that Sylvester-type matrices can also be obtained for such polynomial systems. These results are shown to be a generalization of related results recently repor...
متن کاملResultants for unmixed bivariate polynomial systems produced using the Dixon formulation
A necessary and sufficient condition on the support of a generic unmixed bivariate polynomial system is identified such that for polynomial systems with such support, the Dixon resultant formulation produces their resultants. It is shown that Sylvester-type matrices, called Dixon dialytic matrices, can also be obtained for such polynomial systems. These results are shown to be a generalization ...
متن کاملCayley-Dixon construction of Resultants of Multi-Univariate Composed Polynomials
The Cayley-Dixon formulation for multivariate resultants have been shown to be efficient (both experimentally and theoretically) for computing resultants by simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of Cayley-Dixon resultant construction and the structure of Dixon matrices is analyzed for composed polynomial systems constructed from a multiv...
متن کاملAcm Symposium on Theory of Computing (stoc 96) Sparsity Considerations in Dixon Resultants
New results relating the sparsity of nonhomogeneous polynomial systems and computation of their projection operator (a non-trivial multiple of the multivariate resultant) using Dixon's method are developed. It is demonstrated that Dixon's method of computing resultants, despite being classical, implicitly exploits the sparse structure of input polynomials. It is proved that the size of the Dixo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001